

MONOTERPENE GLUCOSIDES FROM *BERCHEMIA RACEMOSA*

SHOGO INOSHIRI, MARIKO SAIKI, HIROSHI KOHDA, HIDEAKI OTSUKA and KAZUO YAMASAKI*

Institute of Pharmaceutical Sciences, School of Medicine, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734, Japan

(Received 18 November 1987)

Key Word Index—*Berchemia racemosa*; Rhamnaceae; monoterpene glucoside; bornanediol glucoside; angelicoidenol glucoside; isoarborinol; 2D-NMR

Abstract—Two monoterpene glycosides isolated from the stem of *Berchemia racemosa*, have been characterized as (+)-angelicoidenol-2-O- β -D-glucopyranoside and (-)-angelicoidenol-2-O- β -D-glucopyranoside on the basis of chemical and spectral evidence. Isoarborinol was also isolated from the plant.

INTRODUCTION

From the methanol extract of the stem of *Berchemia racemosa* Sieb. et Zucc., we isolated 2,6-dimethoxybenzoquinone as the physiologically active constituent which inhibits histamine release from rat mast cells induced by compound 48/80 and by Concanavalin A [1]. Recently, we also isolated two new aromatic glycosides, methoxyhydroquinone-4-O- β -D-glucopyranoside (tachioside) and syringic acid β -D-glucopyranosyl ester, along with three known glycosides, nudiposide, (-)-secoisolariciresinol-9'-O- β -D-glucopyranoside and methoxyhydroquinone-1-O- β -D-glucopyranoside (isotachioside) from the butanol-soluble fraction of the methanol extract [2]. We now report on the isolation of the triterpene, isoarborinol (**1**) from the hexane extract, and two new glucosides (**2** and **3**) from the butanol-soluble fraction of the methanol extract.

RESULTS AND DISCUSSION

Compound **1** was identified as isoarborinol by direct comparison of its acetate (**1a**) with an authentic sample. The physical data of the oxidation product, arborinone (**1b**) also matched the literature values. The ^{13}C NMR data of **1a** and **1b** also supported the structures.

Compound **2**, $\text{C}_{16}\text{H}_{28}\text{O}_7$, $[\text{M} + \text{Na}]^+$ m/z 355.1737 (calc. 355.1733) gave the pentaacetate, $\text{C}_{26}\text{H}_{38}\text{O}_{12}$, $[\text{M}]^+$ m/z 542. Methanolysis followed by GC showed the presence of glucose (converted to its TMS ether for GC). The ^{13}C NMR spectrum ($\text{C}_5\text{D}_5\text{N}$) of **2** showed the signals of six β -glucopyranosyl carbons, three methyl groups, two- CH_2 groups, one $-\text{CH}$ group, two quarternary carbons, and two- $-\text{CH}-\text{OH}$ groups. There were no signals for $\text{C}=\text{C}$ groups (Table 1).

The three methyl groups gave three singlet peaks in the ^1H NMR spectrum. These data suggested that the aglycone moiety of **2** ($\text{C}_{10}\text{H}_{18}\text{O}_2$) was a bicyclic monoterpene diol. The chemical shifts of the aglycone moiety were very close to the reported value of angelicoidenol (**4**)

Table 1. ^{13}C NMR data and glucosylation shift ($\Delta\delta$ in parentheses) of compounds **2** and **3** ($\text{C}_5\text{D}_5\text{N}$, 67.5 MHz)

C	4*	2 (2-4)	3 (3-4)
1	50.8	50.9 (+0.1)	50.4 (-0.4)
2	75.0	85.2 (+10.2)	82.9 (+7.9)
3	37.1	35.8 (-1.4)	34.2 (-2.9)
4	53.7	53.4 (-0.3)	53.4 (-0.3)
5	75.0	74.8 (-0.2)	74.9 (-0.1)
6	39.6	40.1 (+0.5)	40.1 (+0.5)
7	47.9	47.6 (-0.3)	48.1 (+0.2)
8	21.8	21.3 (-0.5)	21.4 (-0.4)
9	20.2	20.2 (0.0)	20.3 (+0.1)
10	13.5	13.9 (+0.3)	13.6 (+0.1)
G1		106.2 (+7.4)†	103.6 (+4.8)†
G2		75.5	75.3
G3		78.6	78.7
G4		71.7	71.8
G5		78.2	78.3
G6		62.9	62.9

* Data taken from ref. [3].

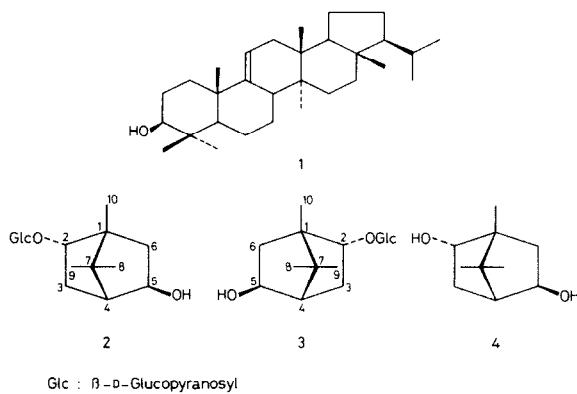
† Difference from free β -D-glucose.

[3] except for those of C-2 and C-3. The chemical shift differences ($\Delta\delta = \delta_{\text{glucoside}} - \delta_{\text{alcohol}}$) of these carbons being +10.2 and -1.4, respectively.

In the ^{13}C - ^1H COSY spectrum, all of the protons were correlated to the appropriate carbon atoms. The ^1H - ^1H COSY spectrum revealed the vicinal relationship of H-2 β (δ 4.18) and H-3 β (δ 2.38, *ddd*, $J = 5, 10$ and 14 Hz) with H-3 α (δ 1.48, *dd*, $J = 3, 14$ Hz); H-3 β also correlated to H-4 α (δ 1.91, *d*, $J = 5$ Hz). The other correlation was observed for H-5 α (δ 4.23) and H-6 β (δ 1.74, *br d*, $J = 13$ Hz) with H-6 α (δ 2.99, *dd*, $J = 8$ and 13 Hz). Weak but significant coupling was observed between H-6 β and H-2 β . The fact that H-4 coupled with only one proton can be explained by the 90° dihedral angles between H-4 α and H-3 α , and H-4 α and H-5. All NMR data satisfy the anticipated bornan- 2,5-diol skeleton.

* Author to whom correspondence should be addressed.

Table 2. ^1H NMR spectral data of compounds **2–4** ($\text{C}_5\text{D}_5\text{N}$ –TMS, 270 MHz for **2** and **3**, 90 MHz for **4***)


H	4*	2	3
2β (exo)	4.50 <i>ddd</i> (9.5, 3.5, 2)	4.18 <i>br d</i> n.d. [†]	4.38 <i>br d</i> (9)
3α (endo)	1.15 <i>dd</i> (13.5, 3.5)	1.48 <i>dd</i> (14, 3)	1.43 <i>dd</i> (13.5, 3.5)
3β (exo)	2.20–2.50 <i>ddd</i> (13.5, 9.5, 5)	2.38 <i>ddd</i> (14, 10, 5)	2.31 <i>ddd</i> (14, 9, 5)
4α	1.95 <i>d</i> (5)	1.91 <i>d</i> (5)	1.96 <i>d</i> (5)
5α (endo)	4.19 <i>dd</i> (8.5, 3)	<i>ca</i> 4.23	4.30 <i>dd</i> (8, 3)
6α (endo)	2.8–3.05 <i>dd</i> (13, 8.5)	2.99 <i>dd</i> (13, 8)	2.95 <i>dd</i> (13, 8)
6β (exo)	1.72 <i>dd</i> (13, 3)	1.74 <i>br d</i> (13)	1.72 <i>br d</i> (13)
8 (Me)	1.40 <i>s</i> [‡]	1.39 <i>s</i>	1.40 <i>s</i>
9 (Me)	0.90 <i>s</i> [‡]	0.85 <i>s</i>	0.84 <i>s</i>
10 (Me)	1.05 <i>s</i> [‡]	1.20 <i>s</i>	1.12 <i>s</i>
1'	Glucosyl moiety	4.93 <i>d</i> (8)	4.90 <i>d</i> (8)
2'		4.03 <i>dd</i> (10, 8)	4.01 <i>dd</i> (9, 8)
3'		4.24 n.d. [†]	4.25 n.d.
4'		4.26 n.d.	4.27 n.d.
5'		3.95 <i>ddd</i> (10, 5, 3)	3.95 <i>ddd</i> (9, 5, 3)
6'		4.40 <i>dd</i> (12, 5)	4.40 <i>dd</i> (12, 5)
6''		4.53 <i>dd</i> (12, 3)	4.54 <i>dd</i> (12, 3)

Coupling constants in Hz are in parentheses.

*Data taken from ref. [3].

[†]Not determined due to overlapping of the signals.

[‡]Assignment interchanged by our C–H COSY results.

Compound **3**, $\text{C}_{16}\text{H}_{28}\text{O}_7$, $[\text{M} + \text{Na}]^+$ m/z 355.1740 (calc. 355.1733) gave rise to very similar ^{13}C and ^1H NMR spectra to those **2** (Tables 1 and 2). Methanolysis of **3** followed by GC showed the presence of glucose (as its TMS ether). These findings suggested that **3** was a stereoisomer of **2**.

In order to establish the position of the glucosyl residue and the absolute structure, the ^{13}C NMR glucosylation shift was considered. In the case of β -D-glucopyranosides of secondary alcohols, the substitution induced shift values of carbon signals caused by glucosylation

(glucosylation shift) depend on the absolute configuration of the alcohol. The shift value ($\Delta\delta = \delta_{\text{glucoside}} - \delta_{\text{alcohol}}$) of an α -carbon is *ca* 6–8 ppm for an achiral alcohol and a chiral (*R*)-alcohol, and *ca* 10 ppm for a chiral (*S*)-alcohol. Also, the two β -carbons of the aglycone and the anomeric carbon reflect the absolute stereochemistry [4, 5].

The glucosylation shifts of both compound indicated that the glucosylated position was restricted to the C-2 hydroxyl group, and that the absolute configuration of this position is *S* for **2** [by reference to the reported value of dammaranediol (**5**)] and *R* for **3** [by analogy with ent-dammaranediol (**6***)] (Table 1 and Fig. 1) [4].

Although the aglycones of both compounds were not obtained, they should be a pair of enantiomers. This was confirmed by Klyne's rule of glycosylation [6]. The calculated specific optical rotation of **2** and **3** from the values of **4** and methyl β -D-glucoside were -11.0° and -27.5° , respectively, which are in good accordance with the observed values, -12.6° and -26.3° , respectively. Thus, the structures of two glucosides, **2** and **3** were elucidated to be 2- β -D-glucopyranosyl-(+)-angelicoidenol and 2- β -D-glucopyranosyl-(−)-angelicoidenol, respectively. It is to be noted that two glucosides with enantiomeric aglycones exist in the same plant.

EXPERIMENTAL

Mp: uncorr; ^1H NMR and ^{13}C NMR: 270 and 67.5 MHz, respectively, except when otherwise stated; MS: 75 eV.

Plant material. *Berchemia racemosa* Sieb. et Zucc. was collected in the vicinity of Taishaku-kyo, Hiroshima Prefecture, Japan. A specimen is deposited at the Herbarium of Experimental Station of Medicinal Plants, Hiroshima University School of Medicine.

Extraction and isolation. Dried stem of *B. racemosa* (2.0 kg) were crushed and extracted with *n*-hexane followed by MeOH. The MeOH extract was suspended in H_2O , and extracted successively with *n*-hexane, Et_2O , EtOAc , BuOH and H_2O . From a

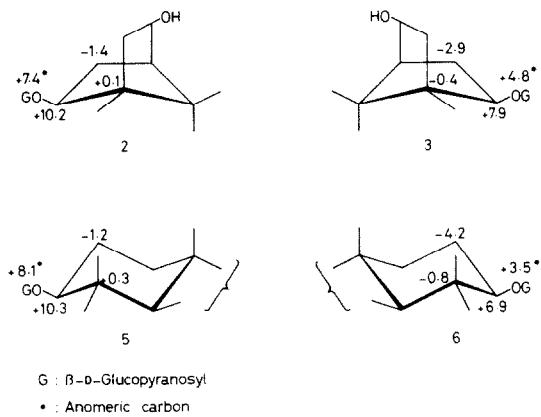


Fig. 1. ^{13}C NMR glucosylation shifts ($\Delta\delta$) on hydroxyl-bearing carbons, anomeric carbons and carbon atoms adjacent to hydroxyl-bearing carbons for the determination of absolute configuration of aglycones.

*Actual ^{13}C NMR data came from β -L-glucoside of **5** [4].

portion (4.1 g) of the combined hexane extract (10.9 g), isoarborinol (**1**) (180 mg) was isolated by silica gel CC (C_6H_6 upto C_6H_6 with 0.5% Me_2CO).

The $BuOH$ -soluble fraction (20.2 g) was chromatographed on highly porous polymer, Diaion HP-20, developed with H_2O containing the 10, 20, 30, . . . 90% MeOH and 100% MeOH). The 50% MeOH eluent was subjected to silica gel CC ($CHCl_3$ -MeOH- H_2O) and DCC ($CHCl_3$ -MeOH- H_2O , 5:6:4) followed by DCC ($CHCl_3$ -MeOH- H_2O -propan-1-ol, 5:6:4:1) again to give a mixture of **2** and **3**. This was subjected to Sephadex LH-20 CC (MeOH), prep. HPLC on RP-18 (MeOH- H_2O) and silica gel CC ($EtOAc$ -EtOH- H_2O) to afford compounds **2** (54 mg), and **3** (27 mg).

Isoarborinol (**1**). Colourless needles from C_6H_6 mp 308–310°, lit. [7] mp 295–296°. MS m/z (rel. int.): 426 [$M]^+$ (20), 411 (30), 393 (6), 259 (20), 43 (100); IR ν_{max}^{KBr} cm^{-1} : 3230, 2930, 2860, 1470, 1385, 1375, 1031.

Isoarborinol acetate (**1a**). Acetylation of **1** (40 mg) in C_5H_5N - Ac_2O (5 ml each) at 55° for 5 hr afforded **1a** (32 mg), mp 290–292°, lit [7] 287–288°; MS m/z : 468, 443, 393, 301, 255, 241, 229; 1H NMR ($CDCl_3$): δ 0.75 (3H, s), 0.76 (3H, s), 0.80 (3H, s), 0.83 (3H, d, J = 6.6 Hz), 0.86 (3H, s), 0.89 (3H, s), 0.90 (3H, d, J = 6.6 Hz), 1.05 (3H, s), 4.50 (1H, m), 5.23 (1H, d, J = 6.1 Hz); identical with authentic spectrum. ^{13}C NMR (in $CDCl_3$, 25 MHz): δ 14.0, 15.3, 16.8, 17.0, 21.4, 22.1, 23.0, 28.2 \times 2 (9 \times CH_3), 20.2, 21.4, 24.2, 26.6, 28.2, 29.7, 35.7, 36.0 \times 2 (9 \times CH_2), 30.8, 41.0, 52.1, 52.5, 59.7 (5 \times CH), 36.8, 38.1, 38.2, 39.5, 42.9 (5 \times qC), 81.0 (CH-O), 114.6 (CH=C), 148.5 (CH=C<), 170.8 (—COOMe).

Arborinone (**1b**). Oxidation of **1** (80 mg) with 102 mg CrO_3 in H_2O (10 ml), AcOH (2 ml) and C_6H_6 (40 ml) for 3 hr afforded arborinone (**1b**) (60 mg), mp 219–221°, lit [7], 214–214.5°; IR ν_{max}^{KBr} cm^{-1} : 3400, 2930, 2860, 1700, 1655, 1270, 1000; ^{13}C NMR (in $CDCl_3$, 25 MHz): δ 14.0, 15.2, 17.0, 21.6, 22.0 \times 3, 25.5 (8 \times Me), 20.1, 22.5, 23.0, 26.2, 28.2, 29.6, 34.8, 35.9, 36.6 (9 \times CH_2), 30.8, 41.1, 51.9, 53.2, 59.6 (5 \times CH), 35.9, 38.1, 39.3, 42.8, 47.6 (5 \times qC), 115.6 (CH=C), 147.4 (C=C<), 214.9 (C=O).

(+)-*Angelicoidenol-2-O-β-D-glucopyranoside* (**2**). Amorphous powder, $[\alpha]_D^{20}$ –12.6° MeOH; c 0.65). FABMS (DMSO, glycerol + NaI) m/z 355.1737 [$M + Na$] $^+$ (calc. 355.1733, $C_{16}H_{28}O_7$ Na); IR ν_{max}^{KBr} cm^{-1} : 3600–3100 (OH), 2900, 1450, 1385, 1360, 1285, 1230, 1160, 1075, 1025; 1H NMR and ^{13}C NMR; see Tables 1 and 2.

(-)-*Angelicoidenol-2-O-β-D-glucopyranoside* (**3**). Amorphous powder, $[\alpha]_D^{20}$ –26.3° (MeOH; c 1.04). FABMS (DMSO, glycerol NaI) m/z 355.1740 [$M + Na$] $^+$ (calc. 355.1733, $C_{16}H_{28}O_7$ Na); 1H NMR and ^{13}C NMR; see Tables 1 and 2.

Acknowledgements—We thank Prof. T. Ohmoto, Toho University for a sample and the NMR spectrum of **1a**, Dr H. Matsuura (Wakunaga Co. Ltd), Mr Hashimoto and Mr K. Koida (Hiroshima City Institute of Public Health) and Prof. T. Yamuchi (Fukuoka University) for NMR and MS measurements.

REFERENCES

1. Inoshiri, S., Sasaki, M., Hirai, Y., Kohda, H., Otsuka, H. and Yamasaki, K. (1986) *Chem. Pharm. Bull.* **34**, 1333.
2. Inoshiri, S., Sasaki, M., Kohda, H., Otsuka, H. and Yamasaki, K. (1987) *Phytochemistry* **26**, 2811.
3. Mahmood, U., Singh, S. B. and Thakur, R. S. (1983) *Phytochemistry* **22**, 774.
4. Kasai, R., Suzuo, M., Asakawa, J. and Tanaka, O. (1977) *Tetrahedron Letters* 175.
5. Tori, K., Seo, S., Yoshimura, Y., Arita, H. and Tomita, Y. (1977) *Tetrahedron Letters* 179.
6. Klyne, W. (1975) in *Determination of Organic Structure by Physical Methods* (Braude, E. A. and Nachod, F. C. eds), p. 73. Academic Press, New York.
7. Vorbrüggen, H., Pacrashi, S. C. and Djerassi, C. (1963) *Ann.* **668**, 57.